NEXT-100 PMT Enclosure System

D. Shuman

Lawrence Berkeley National Laboratory

October 28, 2011

- PMT/enclosure modules now fully inside pressure vessel
- mounted on a Cu carrier plate fastened to inside of torispheric head

- PMT/enclosure modules now fully inside pressure vessel
- mounted on a Cu carrier plate fastened to inside of torispheric head

Basic Description

 PMTs sealed into individual pressure resistant, vacuum tight titanium (Cu OK) enclosures (PMT Module).

- PMT/enclosure modules now fully inside pressure vessel
- mounted on a Cu carrier plate fastened to inside of torispheric head

- PMTs sealed into individual pressure resistant, vacuum tight titanium (Cu OK) enclosures (PMT Module).
- Modules mounted to a common carrier plate that attaches to an internal flange of the pressure vessel head.

- PMT/enclosure modules now fully inside pressure vessel
- mounted on a Cu carrier plate fastened to inside of torispheric head

- PMTs sealed into individual pressure resistant, vacuum tight titanium (Cu OK) enclosures (PMT Module).
- Modules mounted to a common carrier plate that attaches to an internal flange of the pressure vessel head.
- Sapphire windows are secured with titanium screw-down rings and O-ring sealed

- PMT/enclosure modules now fully inside pressure vessel
- mounted on a Cu carrier plate fastened to inside of torispheric head

- PMTs sealed into individual pressure resistant, vacuum tight titanium (Cu OK) enclosures (PMT Module).
- Modules mounted to a common carrier plate that attaches to an internal flange of the pressure vessel head.
- Sapphire windows are secured with titanium screw-down rings and O-ring sealed
- PMT bases are potted with heat conducting epoxy to flexible copper heat spreaders

- PMT/enclosure modules now fully inside pressure vessel
- mounted on a Cu carrier plate fastened to inside of torispheric head

- PMTs sealed into individual pressure resistant, vacuum tight titanium (Cu OK) enclosures (PMT Module).
- Modules mounted to a common carrier plate that attaches to an internal flange of the pressure vessel head.
- Sapphire windows are secured with titanium screw-down rings and O-ring sealed
- PMT bases are potted with heat conducting epoxy to flexible copper heat spreaders
- PMT cables are enclosed in individual pressure resistant, vacuum tight tubing conduits.

- PMT/enclosure modules now fully inside pressure vessel
- mounted on a Cu carrier plate fastened to inside of torispheric head

- PMTs sealed into individual pressure resistant, vacuum tight titanium (Cu OK) enclosures (PMT Module).
- Modules mounted to a common carrier plate that attaches to an internal flange of the pressure vessel head.
- Sapphire windows are secured with titanium screw-down rings and O-ring sealed
- PMT bases are potted with heat conducting epoxy to flexible copper heat spreaders
- PMT cables are enclosed in individual pressure resistant, vacuum tight tubing conduits.
- Conduits all lead to a cantilevered central manifold (vacuum inside)

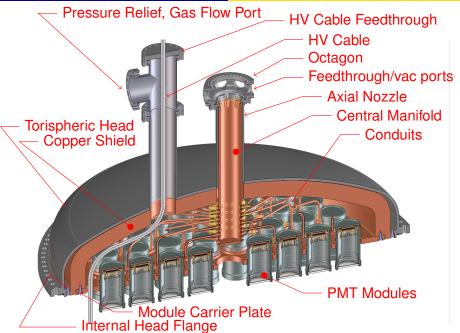
Central manifold seals to nozzle inside flange

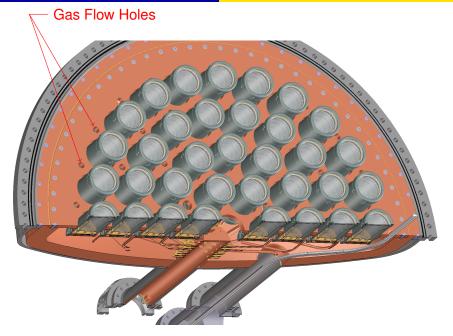
- Central manifold seals to nozzle inside flange
- PMT cables route through central manifold to 41 pin CF feedthroughs on a CF octagon, outside the lead shielding.

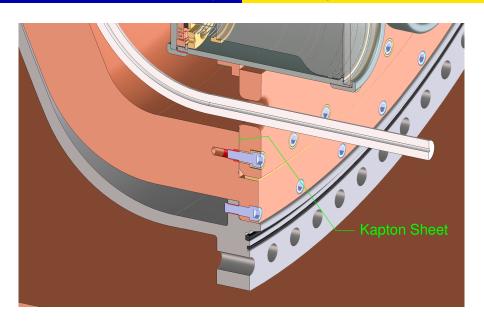
- Central manifold seals to nozzle inside flange
- PMT cables route through central manifold to 41 pin CF feedthroughs on a CF octagon, outside the lead shielding.
- High vacuum($< 10^{-6}$ torr) is applied at octagon port;gives($< 10^{-4}$ torr) inside enclosures.

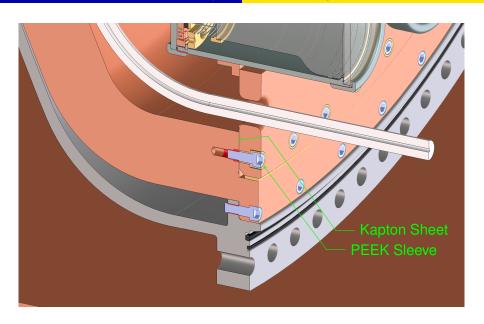
- Central manifold seals to nozzle inside flange
- PMT cables route through central manifold to 41 pin CF feedthroughs on a CF octagon, outside the lead shielding.
- High vacuum($< 10^{-6}$ torr) is applied at octagon port;gives($< 10^{-4}$ torr) inside enclosures.
- Large vacuum tank limits pressure build in central manifold in case of sapphire window failure

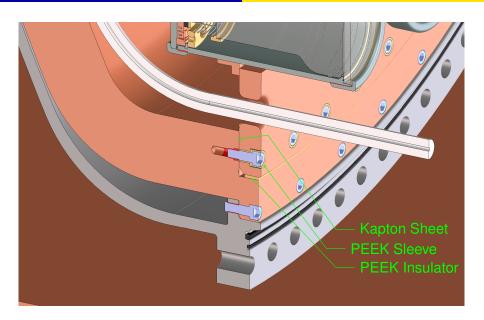
- Central manifold seals to nozzle inside flange
- PMT cables route through central manifold to 41 pin CF feedthroughs on a CF octagon, outside the lead shielding.
- High vacuum($< 10^{-6}$ torr) is applied at octagon port;gives($< 10^{-4}$ torr) inside enclosures.
- Large vacuum tank limits pressure build in central manifold in case of sapphire window failure
- Xenon permeation through seals is recovered with a cold trap.

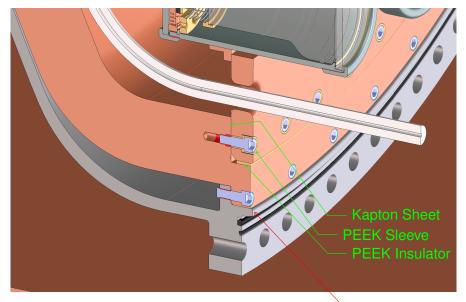

- Central manifold seals to nozzle inside flange
- PMT cables route through central manifold to 41 pin CF feedthroughs on a CF octagon, outside the lead shielding.
- High vacuum($< 10^{-6}$ torr) is applied at octagon port;gives($< 10^{-4}$ torr) inside enclosures.
- Large vacuum tank limits pressure build in central manifold in case of sapphire window failure
- Xenon permeation through seals is recovered with a cold trap.
- Base cooling by conduction into enclosure and out to vessel flange. (some convection)

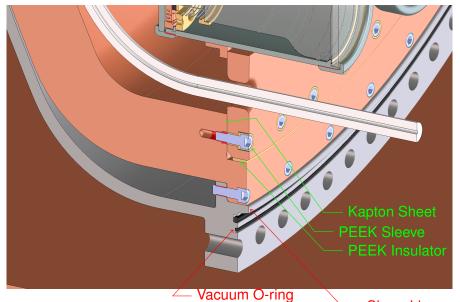

- Central manifold seals to nozzle inside flange
- PMT cables route through central manifold to 41 pin CF feedthroughs on a CF octagon, outside the lead shielding.
- High vacuum($< 10^{-6}$ torr) is applied at octagon port;gives($< 10^{-4}$ torr) inside enclosures.
- Large vacuum tank limits pressure build in central manifold in case of sapphire window failure
- Xenon permeation through seals is recovered with a cold trap.
- Base cooling by conduction into enclosure and out to vessel flange. (some convection)
- Carrier plate and central manifold can be electrically (but not thermally) isolated from the pressure vessel.

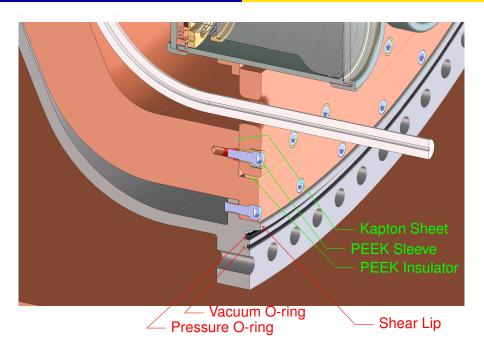

- Central manifold seals to nozzle inside flange
- PMT cables route through central manifold to 41 pin CF feedthroughs on a CF octagon, outside the lead shielding.
- High vacuum($< 10^{-6}$ torr) is applied at octagon port;gives($< 10^{-4}$ torr) inside enclosures.
- Large vacuum tank limits pressure build in central manifold in case of sapphire window failure
- Xenon permeation through seals is recovered with a cold trap.
- Base cooling by conduction into enclosure and out to vessel flange. (some convection)
- Carrier plate and central manifold can be electrically (but not thermally) isolated from the pressure vessel.
- Alternately, the cathodes can be grounded, and the anodes and signal run at high positive voltage using only the central 21 pins of each 41 pin feedthrough, to avoid flashover.

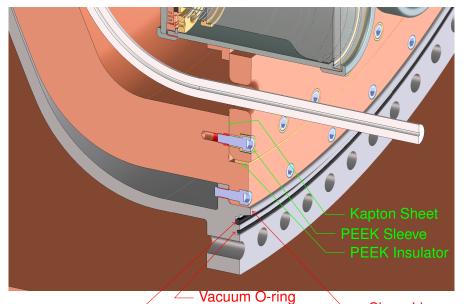

- Central manifold seals to nozzle inside flange
- PMT cables route through central manifold to 41 pin CF feedthroughs on a CF octagon, outside the lead shielding.
- High vacuum($< 10^{-6}$ torr) is applied at octagon port;gives($< 10^{-4}$ torr) inside enclosures.
- Large vacuum tank limits pressure build in central manifold in case of sapphire window failure
- Xenon permeation through seals is recovered with a cold trap.
- Base cooling by conduction into enclosure and out to vessel flange. (some convection)
- Carrier plate and central manifold can be electrically (but not thermally) isolated from the pressure vessel.
- Alternately, the cathodes can be grounded, and the anodes and signal run at high positive voltage using only the central 21 pins of each 41 pin feedthrough, to avoid flashover.


Parameter	qty	units
Maximum Allowable External Pressure on PMT	3	bar (abs)
Mass, Vessel and both heads	1100	kg



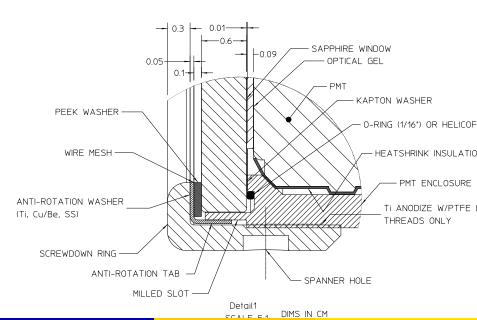


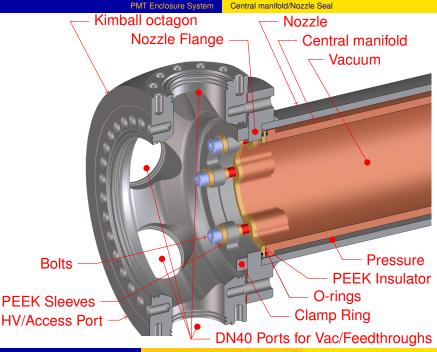




Shear Lip




Shear Lip



Pressure O-ring
NEXT-100 PMT Enclosure System

